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Background

• Aalto University is a partner of the Ecofuel project.

• School of Chemical Technology is the biggest

participant from Aalto.

• School of Engineering participates with a small

contribution.



Introduction

• Nitrogen oxides (NO + NO2), commonly named as

NOx, are harmful gases as they participate to the

smog and acid rain phenomena, and to the production

of ozone in lower atmosphere.

• NOx is a typical byproduct of combustion processes,

e.g. engine combustion produces NOx .

• There are many ways to reduce NOx emissions. Part

of them reduce production of NOx already during the

combustion process, and part of them are

aftertreatment methods, i.e. working with the NOx

already produced in the exhaust gases.



Selective catalytic reduction (SCR)

• We are studying the latter method, i.e. the

aftertreatment of exhaust gases.

• Selective catalytic reduction (SCR) can be used to

reduce NOx from exhaust gases.

• In an SCR device, an urea-water solution is injected to

the exhaust gases.

• The urea-water solution evaporates in the hot exhaust

gases and ammonia (NH3) is formed.

• Ammonia reacts with NOx and transforms NOx into

harmless N2 and water.

𝑁𝐻3 + 𝑁𝑂𝑥 → 𝑁2 + 𝐻2𝑂



A novel SCR method

• Urea-water solution is injected to the exhaust gases

with a high injection pressure (150 bar).

• Injection is directed against the hot opposing exhaust

gases.

• Succesful engine experiments published in Kaario et

al. 2014.

• Large Eddy Simulation (LES) method is used to

capture the chaotically swirling turbulent flow in the

exhaust pipe.
Hot exhaust gases
from engine, 

m/s
Injector

SCR spray injected
towards the gas
flow, Pinj=150bar

To catalyst



Computed cases

• There seems to be very little experimental evidence

from such high pressure SCR sprays, e.g. droplet

sizes.

• Therefore, we will analyze four monodisperse sprays

to characterize the real polydisperse SCR sprays.

• Consequently, we will use 10, 20, 30, and 40 μm

droplet size sprays .

Gas mass flow rate in the pipe [kg/h] 420

Average gas temperature in the pipe [K] 523

Pressure in the pipe [bar] 1

Average flow velocity [m/s] 19

Injection pressure [bar] 150

Injection velocity [m/s] 150

Nozzle hole diameter [mm] 0.23

Number of nozzle holes 1

Injection duration [ms] 4

Details of the SCR spray cases.



Pipe flow validation
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SCR spray mixing

Hot exhaust

gas flow
Urea injection
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SCR spray penetration

Upstream penetration Downstream penetration

penetration
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SCR spray droplet sizes
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SCR spray evaporation
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SCR vapor distribution
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SCR vapor distribution
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𝑈𝐼 = 1 −
 𝑖

𝑁 𝑌𝑖 −  𝑌 𝐴𝑖

2  𝑌  𝑖
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Conclusions

• Accurate turbulence modeling (LES) was applied for

the 1st time in an SCR system simulation

• High Reynolds number turbulent pipe flow was in

good agreement with experimental data

• The droplet evaporation rates were strongly correlated

with their size. On the other hand, vapor distribution at

the pipe exit was not.

• The strong vapor mixing observed in a short distance

upstream the pipe exit suggests that more uniform

vapor distribution could be achieved by a relatively

modest pipe lenght increase.


